刊名: 教育研究
Educational
Research
主办: 中国教育科学研究院
周期: 月刊
出版地:北京市
语种: 中文;
开本: 16开
ISSN: 1002-5731
CN: 11-1281/G4
邮发代号:
2-277
投稿邮箱:jyyj79@126.com
历史沿革:
现用刊名:教育研究
创刊时间:1979
该刊被以下数据库收录:
中国人文社会科学引文数据库(CHSSCD—2004)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
对初中数学教学的几点思考
【作者】 胡 兴
【机构】 贵州省六盘水市盘县第十一中学
【摘要】 本文笔者从“在数学教学中培养学生的新观念、新思想”;“在数学教学中培养学生的创新能力”;“在数学教学中培养学生的经营和开拓市场的能力”;“在数学教学中培养学生的团队精神”四个一方面对“初中数学教学的几点思考”进行论述。【关键词】初中数学;教学;思考
进入新的世纪以来,我们面临的问题很多,其中最关键的就是怎样使产为升级,在这方面起重要作用的是人才,究竟需要什么样的人才呢?专家们指出需要以下四种素质的人才,为此在初中数学教学中应加强对学生以下四个方面的培养。
一、在数学教学中培养学生的新观念、新思路
新观念中不仅包含对事物的新认识,新思想,而且包含一个不断学习的过程。为此作为新人才就必须学会学习,只有不断地学习,获取新知识更新观念,形成新认识。在数学历史上,法国大数学家笛卡尔在学生时代喜欢博览群书,认识到代数与几何割裂的弊病,他用代数方法研究几何的作图问题,指出了作图问题与求方程组的解之间的关系,通过具体的问题,提出了坐标法,把几何曲线表示成代数方程,断言曲线方程的次数与坐标轴的选择无关,用方程的次数对曲线加以分类,认识到了曲线的交点与方程组的解之间的关系。主张把代数与几何相结合,把量化议程用于几何研究的新观点,从而创立解析几何学。作为初中数学教师在教学中不仅要教学生学会,更要教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,灵活运用比较、分析,综合三种基本证明方法,同时引导学生用三角、复数、几何等新方法研究证明不等式。例:已知a>=0,b>=0,且a+b=1,求证(a+2)(a+2)+(b+2)(b+2)>25/2证明这个不等式方法较多,除基本证法外,可利用二次函数的求最值、三角代换、构造直角三角形等途径证明。若将a+b=1(a>=0,b>=0)作为平面直角坐标系内的线段,也能用解析几何知识求证。证法如下:在平面直角坐标系内取直线段,x+y=1,(o=(x)=1),(a+2)(a+2)+(b+2)(b+2)看作点(-2,-2)与线段x+y=1上的点(a,b)之间的距离的平方。由于点到一直线的距离是这点与该直线上任意一点之间的距离的最小值。而d,d=(-2-2-1)/2=25/2,所以(d+2)(d+2)+(b+2)(b+2)>=25/2。“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。
二、在数学教学中培养学生的创新能力
创新能力在数学教学中主要表现对已解决问题妹求新的解法。“学起于思,思源于疑”,学生探索知识的思维过程总是从思维开始的,又在解决问题中得到发展和创新。教学过程中学生在教师创设的情景下,自已动手操作,动脑思考,动口表达,探索未知领域,寻找客观真理,成为发现者,要让学生自始自终地参与这一探索过程,发展学生的创新能力。例如在球的体积教学中,笔者利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。每组出一人又组成许多小组,各小组分别将圆锥放入圆柱中,然后用半球装潢土例入圆柱中,学生们发现它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程;集公理化思想、转化思想,等级类此思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。
三、在数学教学中培养学生的经营和开拓市场的能力
一切数学知识都来源于现实生活中,同时,现实生活中许多问题都需要用数学知识、数学思想方法去思考解决。比如,洗衣机按什么程序运行有利节约用水;渔场主怎样经营既能获得最高产量,又能实现可持续发展;一件好的产品设计怎样营销方案才能快速得市场认可,产生良好的经济效盖。为此数学教学中应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市的能力,在数学教学中主要体现为一个数学问题或实际问题,如何设计出最佳的解决方案或模型。如证明组合柜等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明,即构造一个组合模型,原左端为m个元素中取几个的组合数。原式右端可看成题目一问题的另一种算法;把满足条件的组合分为两类,一类为不取某个元素a,1,有Cnm-1的取法;一类为必取a 1有Cn-1m-1种取法。由加法原理及解的唯一性,可知原式成立。又如,经营和开拓市时,我们常常需要对市场进行一些基本的数字统计,通过建立教学模型进行分析研究来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和应用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。
四、在数学教学中培养学生的团队精神
团队精神就是一种相互协作,相互配合的工作精神。数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神,又如我在讲授球的体积公式时,课前我让20名学生用厚0.5厘米的纸板依次做半径为10、9、5、9……0.5厘米圆柱,列出各圆柱体积计算公式并算出结果。又让40名学生用0.25厘米的纸板依次做半径为10,9,75,9.5……0.5.0.25厘米圆柱,列出各圆柱的体积计算公试并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,帮助学生发现了球的体积公式另一证法。同时不仅向学生讲教学过程中的实验材料为什么让大家各自准备,而且有竭尽只地让学生损坏串连到一起的几何体和各自的小圆柱。通过这些使学生认识到只有齐心协力才能达到成功的彼岸。