刊名: 教育研究
Educational
Research
主办: 中国教育科学研究院
周期: 月刊
出版地:北京市
语种: 中文;
开本: 16开
ISSN: 1002-5731
CN: 11-1281/G4
邮发代号:
2-277
投稿邮箱:jyyj79@126.com
历史沿革:
现用刊名:教育研究
创刊时间:1979
该刊被以下数据库收录:
中国人文社会科学引文数据库(CHSSCD—2004)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
浅议训练学生发散思维,提高学生解题能力
【作者】 吴承炎
【机构】 贵州省玉屏县丙溪民族小学
【摘要】笔者在本文中从“激发求知,培养思维的积极性”;“异想天开,培养思维的求异性”;“寻根问底,培养思维的广度”;“由此及被,培养思维的联想性”四个方面对标题进行阐述。【关键词】发散思维;解题能力
【正文】
发散思维包括思维的积极性,求异性,文阔性和思维的联想性,培养和提高学生的发散思维能力,是让学生学好数学,提高教学质量的重要手段。那么,如何对学生进行发散思维的培养和训练呢?在教学实践中,笔者体会到,应该做到以下几个方面。
一、 激发求知,培养思维的积极性
消极性思维是直接影响和障碍着主观能力性的发挥,积极性思维能克制消极性的思维。所以说培养学生的积极参与学习的思维是培养学生的发散思维的关键所在。在教学中,教师要十分注意激发学生强烈的学习兴趣和对知识的渴求使他们能带着一种高涨的热情参与学习和思考。例如,在《乘法初步知识》一课中,笔者先出几道一位数连加的算式给学生改写为乘法算式,然后又写出12+12+12+2的算式让学生思考,讨论能否改成含有乘法的算式。在老师的点拨下,学生列出的算式有;
1、12x3+2
2、12x4-10
3、2x19
通过练习,这样有效的引导了学生学习的积极性,激发了学生对新知识,新方法的探索和求知欲望,培养了学生的积极思维及谋求新知识的热情。
二,异想天开,培养思维的求异性
“异想天开”是个成语,《现代汉语词典》解析说:“形容想法非常奇怪”。“想法奇怪”说的意思是想法未按常规,不按习惯, 不按定向去思维,而是从其发散思维。用发散思维。用发散思维往往能够求得问题的新的解决方法。这样的思维方式,就是思维的求异性。
小学生的年龄小,抽象思维较差,往往难以摆脱已有的,常规的习惯的思维方向,其思维走势,又往往影响了对新问题的解决,甚至产生偏差或错误,所以要搞好数学的教学,就要培养学生的“异想天开”的发散思维,发展其抽象思维能力,也就是说注重培养学生的思维求异性。例如“四则运算之间的内在联系”一课,笔者就引导学生“异想天开”,运用思维的求异性去教学,课堂上,先出示“迎奥运,学数学”为主题的四则运算的几道题给学生计息;
(一)8+8连加多少次为2008?
(二)2008-8连减多少次为0?
(三)251x8=(一口清,限时15秒报出结果,列出简便算式,有多少个?)
(四)2008÷8=(一口清,限时15报出结果,列出简便算式,有多少个?)
提示学生:要变变换角度思考,用“异想”谋求新法,实现“天开”。
教师在布置练习题后,在课堂上巡回视察,师生进行互动教学:告诉学生在做第一,第二题时,不要一个一个地去加去减,要变换角度思考,应从加减与乘除的关系中去考虑,经过老师一点拔,学生很快就会算出来了。从计算中,训练和培养了学生的求异性思维。做完练习题后,师生共同总结明确:减法是加法的逆运算,加与乘之间是转换的关系。当加数相同时,加法转换为乘法,所有的乘法都可以成加法。加减,乘除。加乘,减除之间都有内在联系。
通过以上的教学活动,学生要喜欢数学,认识到运用思维的求异性 解答问题的妙处,从而训练和培养教育学生的发散思维,提高抽象思维能力,有助于学好数学。
三、 寻根问底,培养思维的广度
大多数学生思维一般比较狭窄,对问题只求知道个答案。这种知其一,不知其二,稍有变化,就不知所措了,这样的表达就是思维的狭窄性。针对这种状况,笔者就通过一题多解,一题多变的反复训练,开拓学生解题思路。在数学教学中,不能只重视计算结果,更要重解题的方式、方法和步骤,特别是解题的疑难点。在选题上,要选择或设计一些有层次,有坡度,要求明确,题型多变的练习题给学生做。在课堂上,老师做向导,让学生讲疑难,提问题,问方向,求方法。这样学生通过不断探索,不断根寻底,不断总结解题的方法和技巧,使学生思维更广阔,更深远,从而有利于学好数学。
四,由此及彼,培养思维的联想性
联想,是四某概念而引起其他相关的概念。学生没有思维的联想性,反联想性不丰富,是学不好数学的。
在数学教学联想思维是发散思维的显著标志,联想思维的过程是由此及彼,由表及里,由浅入深的过程。所以有了联想,才能对问题认识得更深刻,更透彻,从而解答问题。事实证明,学生没有思维的联想性或联想不丰富,解答问题时的思维就不畅通。因此要特别注重培养学生思维的联想性,在教学中,老师就要通过联想思维的训练有素,才能使学生的思维达到一定的深度。例如有些题目,从表面上看支,不是工程问题,而题目的特点却与工程问题相同,因此可以利用工程问题思路去分析解答。这样,用转化方法,由此及彼,迁移深化,问题就解决了,学生的联想思维得以培养和提高。
总而言之,学生的思维积极性活跃了,又有求异性,且有广度和深度了,学生学起数学来就容易多了,老师就站在岸上指点学生要数学的海洋里驾驭一叶扁泛波逐浪甚至远航了。
发散思维包括思维的积极性,求异性,文阔性和思维的联想性,培养和提高学生的发散思维能力,是让学生学好数学,提高教学质量的重要手段。那么,如何对学生进行发散思维的培养和训练呢?在教学实践中,笔者体会到,应该做到以下几个方面。
一、 激发求知,培养思维的积极性
消极性思维是直接影响和障碍着主观能力性的发挥,积极性思维能克制消极性的思维。所以说培养学生的积极参与学习的思维是培养学生的发散思维的关键所在。在教学中,教师要十分注意激发学生强烈的学习兴趣和对知识的渴求使他们能带着一种高涨的热情参与学习和思考。例如,在《乘法初步知识》一课中,笔者先出几道一位数连加的算式给学生改写为乘法算式,然后又写出12+12+12+2的算式让学生思考,讨论能否改成含有乘法的算式。在老师的点拨下,学生列出的算式有;
1、12x3+2
2、12x4-10
3、2x19
通过练习,这样有效的引导了学生学习的积极性,激发了学生对新知识,新方法的探索和求知欲望,培养了学生的积极思维及谋求新知识的热情。
二,异想天开,培养思维的求异性
“异想天开”是个成语,《现代汉语词典》解析说:“形容想法非常奇怪”。“想法奇怪”说的意思是想法未按常规,不按习惯, 不按定向去思维,而是从其发散思维。用发散思维。用发散思维往往能够求得问题的新的解决方法。这样的思维方式,就是思维的求异性。
小学生的年龄小,抽象思维较差,往往难以摆脱已有的,常规的习惯的思维方向,其思维走势,又往往影响了对新问题的解决,甚至产生偏差或错误,所以要搞好数学的教学,就要培养学生的“异想天开”的发散思维,发展其抽象思维能力,也就是说注重培养学生的思维求异性。例如“四则运算之间的内在联系”一课,笔者就引导学生“异想天开”,运用思维的求异性去教学,课堂上,先出示“迎奥运,学数学”为主题的四则运算的几道题给学生计息;
(一)8+8连加多少次为2008?
(二)2008-8连减多少次为0?
(三)251x8=(一口清,限时15秒报出结果,列出简便算式,有多少个?)
(四)2008÷8=(一口清,限时15报出结果,列出简便算式,有多少个?)
提示学生:要变变换角度思考,用“异想”谋求新法,实现“天开”。
教师在布置练习题后,在课堂上巡回视察,师生进行互动教学:告诉学生在做第一,第二题时,不要一个一个地去加去减,要变换角度思考,应从加减与乘除的关系中去考虑,经过老师一点拔,学生很快就会算出来了。从计算中,训练和培养了学生的求异性思维。做完练习题后,师生共同总结明确:减法是加法的逆运算,加与乘之间是转换的关系。当加数相同时,加法转换为乘法,所有的乘法都可以成加法。加减,乘除。加乘,减除之间都有内在联系。
通过以上的教学活动,学生要喜欢数学,认识到运用思维的求异性 解答问题的妙处,从而训练和培养教育学生的发散思维,提高抽象思维能力,有助于学好数学。
三、 寻根问底,培养思维的广度
大多数学生思维一般比较狭窄,对问题只求知道个答案。这种知其一,不知其二,稍有变化,就不知所措了,这样的表达就是思维的狭窄性。针对这种状况,笔者就通过一题多解,一题多变的反复训练,开拓学生解题思路。在数学教学中,不能只重视计算结果,更要重解题的方式、方法和步骤,特别是解题的疑难点。在选题上,要选择或设计一些有层次,有坡度,要求明确,题型多变的练习题给学生做。在课堂上,老师做向导,让学生讲疑难,提问题,问方向,求方法。这样学生通过不断探索,不断根寻底,不断总结解题的方法和技巧,使学生思维更广阔,更深远,从而有利于学好数学。
四,由此及彼,培养思维的联想性
联想,是四某概念而引起其他相关的概念。学生没有思维的联想性,反联想性不丰富,是学不好数学的。
在数学教学联想思维是发散思维的显著标志,联想思维的过程是由此及彼,由表及里,由浅入深的过程。所以有了联想,才能对问题认识得更深刻,更透彻,从而解答问题。事实证明,学生没有思维的联想性或联想不丰富,解答问题时的思维就不畅通。因此要特别注重培养学生思维的联想性,在教学中,老师就要通过联想思维的训练有素,才能使学生的思维达到一定的深度。例如有些题目,从表面上看支,不是工程问题,而题目的特点却与工程问题相同,因此可以利用工程问题思路去分析解答。这样,用转化方法,由此及彼,迁移深化,问题就解决了,学生的联想思维得以培养和提高。
总而言之,学生的思维积极性活跃了,又有求异性,且有广度和深度了,学生学起数学来就容易多了,老师就站在岸上指点学生要数学的海洋里驾驭一叶扁泛波逐浪甚至远航了。